92 research outputs found

    Assessing the impact of non-linear responses of field spectroradiometers on the estimation of biophysical parameters and light use efficiency

    Get PDF
    Tommaso Julitta’s Short Term Scientific Mission was funded by the Cost Action ES0903 – Eurospec. Javier Pacheco-Labrador’s stay was partially funded by the Biospec project “Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of Global Change” (CGL2008-02301/CLI, Ministry of Science and Innovation).Peer reviewe

    Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images

    Get PDF
    and (ii) the development of a spectral index related to the roof weathering status. Aerial images were collected through the Multispectral Infrared and Visible Imaging Spectrometer (MIVIS) sensor, which acquires data in 102 channels from the visible to the thermal infrared spectral range. An image based supervised classification was performed using the Spectral Angle Mapper (SAM) algorithm. The SAM was trained through a set of pixels selected on roofs of different materials. The map showed an average producer's accuracy (PA) of 86% and a user's accuracy (UA) of 89% for the asbestos cement class. A novel spectral index, the "Index of Surface Deterioration" (ISD), was defined based on measurements collected with a portable spectroradiometer on asbestos cement roofs that were characterized by different weathering statuses. The ISD was then calculated on the MIVIS images, allowing the distinction of two weathering classes (i.e., high and low). The asbestos cement map was handled in a Geographic Information System (GIS) in order to supply the municipalities with the cadastral references of each property having an asbestos cement roof. This tool can be purposed for municipalities as an aid to prioritize asbestos removal, based on roof weathering status

    mapping the suitability for ice core drilling of glaciers in the european alps and the asian high mountains

    Get PDF
    ABSTRACTIce cores from mid-latitude mountain glaciers provide detailed information on past climate conditions and regional environmental changes, which is essential for placing current climate change into a longer term perspective. In this context, it is important to define guidelines and create dedicated maps to identify suitable areas for future ice-core drillings. In this study, the suitability for ice-core drilling (SICD) of a mountain glacier is defined as the possibility of extracting an ice core with preserved stratigraphy suitable for reconstructing past climate. Morphometric and climatic variables related to SICD are selected through literature review and characterization of previously drilled sites. A quantitative Weight of Evidence method is proposed to combine selected variables (i.e. slope, local relief, temperature and direct solar radiation) to map the potential drilling sites in mid-latitude mountain glaciers. The method was first developed in the European Alps and then applied to the Asian High Mountains. Model performances and limitations are discussed and first indications of new potential drilling sites in the Asian High Mountains are provided. Results presented here can facilitate the selection of future drilling sites especially on unexplored Asian mountain glaciers towards the understanding of climate and environmental changes

    Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery

    Get PDF
    This paper presents a method for mapping the nitrogen (N) status in a maize field using hyperspectral remote sensing imagery. An airborne survey was conducted with an AISA Eagle hyperspectral sensor over an experimental farm where maize (Zea mays L.) was grown with two N fertilization levels (0 and 100 kg N ha-1) in four replicates. Leaf and canopy field data were collected during the flight. The nitrogen (N) status has been estimated in this work based on the Nitrogen Nutrition Index (NNI) defined as the ratio between the leaf actual N concentration (%Na) of the crop and the minimum N content required for the maximum biomass production (critical N concentration (%Nc)) calculated through the dry mass at the time of the flight (Wflight). The inputs required to calculate the NNI (i.e. %Na and Wflight) have been estimated through regression analyses between field data and remotely sensed vegetation indices. MCARI/MTVI2 (Modified Chlorophyll Absorption Ratio Index / Modified Triangular Vegetation Index 2) showed the best performances in estimating the %Na (R2 = 0.59) and MTVI2 in estimating the Wflight (R2 = 0.80). The %Na and the Wflight were then mapped and used to compute the NNI map over the entire field. The NNI map agreed with the NNI estimated using field data through traditional destructive measurements (R2 = 0.70) confirming the potential of using remotely sensed indices to assess the crop N condition. Finally, a method to derive a pixel based variable rate N fertilization map was proposed as the difference between the actual N content and the optimal N content. We think that the proposed operational methodology is promising for precision farming since it represents an innovative attempt to derive from an aerial hyperspectral image a variable rate N fertilization map based on the actual crop N status.JRC.H.4-Monitoring Agricultural Resource

    Forest species mapping using airborne hyperspectral APEX data

    Get PDF
    Abstract The accurate mapping of forest species is a very important task in relation to the increasing need to better understand the role of the forest ecosystem within environmental dynamics. The objective of this paper is the investigation of the potential of a multi-temporal hyperspectral dataset for the production of a thematic map of the dominant species in the Forêt de Hardt (France). Hyperspectral data were collected in June and September 2013 using the Airborne Prism EXperiment (APEX) sensor, covering the visible, near-infrared and shortwave infrared spectral regions with a spatial resolution of 3 m by 3 m. The map was realized by means of a maximum likelihood supervised classification. The classification was first performed separately on images from June and September and then on the two images together. Class discrimination was performed using as input 3 spectral indices computed as ratios between red edge bands and a blue band for each image. The map was validated using a testing set selected on the basis of a random stratified sampling scheme. Results showed that the algorithm performances improved from an overall accuracy of 59.5% and 48% (for the June and September images, respectively) to an overall accuracy of 74.4%, with the producer's accuracy ranging from 60% to 86% and user's accuracy ranging from 61% to 90%, when both images (June and September) were combined. This study demonstrates that the use of multi-temporal high-resolution images acquired in two different vegetation development stages (i.e., 17 June 2013 and 4 September 2013) allows accurate (overall accuracy 74.4%) local-scale thematic products to be obtained in an operational way

    Mapping surface features of an Alpine glacier through multispectral and thermal drone surveys

    Full text link
    Glacier surfaces are highly heterogeneous mixtures of ice, snow, light-absorbing impurities and debris material. The spatial and temporal variability of these components affects ice surface characteristics and strongly influences glacier energy and mass balance. Remote sensing offers a unique opportunity to characterize glacier optical and thermal properties, enabling a better understanding of different processes occurring at the glacial surface. In this study, we evaluate the potential of optical and thermal data collected from field and drone platforms to map the abundances of predominant glacier surfaces (i.e., snow, clean ice, melting ice, dark ice, cryoconite, dusty snow and debris cover) on the Zebrù glacier in the Italian Alps. The drone surveys were conducted on the ablation zone of the glacier on 29 and 30 July 2020, corresponding to the middle of the ablation season. We identified very high heterogeneity of surface types dominated by melting ice (30% of the investigated area), dark ice (24%), clean ice (19%) and debris cover (17%). The surface temperature of debris cover was inversely related to debris-cover thickness. This relation is influenced by the petrology of debris cover, suggesting the importance of lithology when considering the role of debris over glaciers. Multispectral and thermal drone surveys can thus provide accurate high-resolution maps of different snow and ice types and their temperature, which are critical elements to better understand the glacier’s energy budget and melt rates

    Remote sensing-based estimation of gross primary production in a subalpine grassland

    Get PDF
    This study investigates the performances in a terrestrial ecosystem of gross primary production (GPP) estimation of a suite of spectral vegetation indexes (VIs) that can be computed from currently orbiting platforms. Vegetation indexes were computed from near-surface field spectroscopy measurements collected using an automatic system designed for high temporal frequency acquisition of spectral measurements in the visible near-infrared region. Spectral observations were collected for two consecutive years in Italy in a subalpine grassland equipped with an eddy covariance (EC) flux tower that provides continuous measurements of net ecosystem carbon dioxide (CO2) exchange (NEE) and the derived GPP. Different VIs were calculated based on ESA-MERIS and NASA-MODIS spectral bands and correlated with biophysical (Leaf area index, LAI; fraction of photosynthetically active radiation intercepted by green vegetation, f IPARg), biochemical (chlorophyll concentration) and ecophysiological (green light-use efficiency, LUEg) canopy variables. In this study, the normalized difference vegetation index (NDVI) was the index best correlated with LAI and f IPARg (r = 0.90 and 0.95, respectively), the MERIS terrestrial chlorophyll index (MTCI) with leaf chlorophyll content (r = 0.91) and the photochemical reflectance index (PRI551), computed as (R531 −R551)/(R531 +R551) with LUEg (r = 0.64). Subsequently, these VIs were used to estimate GPP using different modelling solutions based on Monteith’s lightuse efficiency model describing the GPP as driven by the photosynthetically active radiation absorbed by green vegetation (APARg) and by the efficiency (") with which plants use the absorbed radiation to fix carbon via photosynthesis. Results show that GPP can be successfully modelled with a combination of VIs and meteorological data or VIs only. Vegetation indexes designed to be more sensitive to chlorophyll content explained most of the variability in GPP in the ecosystem investigated, characterised by a strong seasonal dynamic of GPP. Accuracy in GPP estimation slightly improves when taking into account high frequency modulations of GPP driven by incident PAR or modelling LUEg with the PRI in model formulation. Similar results were obtained for both measured daily VIs and VIs obtained as 16-day composite time series and then downscaled from the compositing period to daily scale (resampled data). However, the use of resampled data rather than measured daily input data decreases the accuracy of the total GPP estimation on an annual basis.JRC.H.4-Monitoring Agricultural Resource

    Assessing across-scale optical diversity and productivity relationships in grasslands of the Italian alps

    Get PDF
    The linearity and scale-dependency of ecosystem biodiversity and productivity relationships (BPRs) have been under intense debate. In a changing climate, monitoring BPRs within and across different ecosystem types is crucial, and novel remote sensing tools such as the Sentinel-2 (S2) may be adopted to retrieve ecosystem diversity information and to investigate optical diversity and productivity patterns. But are the S2 spectral and spatial resolutions suitable to detect relationships between optical diversity and productivity? In this study, we implemented an integrated analysis of spatial patterns of grassland productivity and optical diversity using optical remote sensing and Eddy Covariance data. Across-scale optical diversity and ecosystem productivity patterns were analyzed for different grassland associations with a wide range of productivity. Using airborne optical data to simulate S2, we provided empirical evidence that the best optical proxies of ecosystem productivity were linearly correlated with optical diversity. Correlation analysis at increasing pixel sizes proved an evident scale-dependency of the relationships between optical diversity and productivity. The results indicate the strong potential of S2 for future large-scale assessment of across-ecosystem dynamics at upper levels of observation
    corecore